

Revolutionary Transformations in Economic Systems and the Evolution of Economic Theory: From Industrialization to Digitalization and Quantum Economics (1871–2021)

Akif Musayev

Doctor of Economic Sciences, Professor, Institute of Economics, Azerbaijan National Academy of Sciences (ANAS), Head of the Department "Mathematical Support of Economic Research", Azerbaijan.
E-mail: akif.musayev@gmail.com
<https://orcid.org/0000-0002-8318-5834>

Mirvari Gazanfarli

Institute of Economics, Azerbaijan National Academy of Sciences (ANAS),
Department of "Mathematical Support of Economic Research", Research Fellow, Azerbaijan.
E-mail: q.miraa@gmail.com
<https://orcid.org/0000-0002-4020-7466>

Received: 24.10.2023

Accepted: 26.02.2025

<https://doi.org/10.56334/bpi/4.1.4>

Abstract

This study provides a comprehensive examination of revolutionary transformations in global economic structures and economic thought throughout the period 1871–2021. Through analysis of seminal theoretical works and empirical evidence, the paper investigates limitations of the industrial-era economic paradigm, revealing systemic shortcomings such as the neglect of shadow economic activity, the unsustainable expansion of financial markets relative to real production, and structural distortions caused by excessive service-sector dominance. The paper further explores global transition dynamics toward a digital economy and examines the socio-economic consequences of the Fourth Industrial Revolution as reflected in labour markets, value creation, informational flows, and inequality structures. Finally, the study discusses emerging conceptual frameworks such as quantum economics and quantum cognition—arguing that these approaches, through incorporation of uncertainty, contextual decision-making, and behavioural modelling, hold the potential to address persistent deficiencies in neoclassical and mathematical economic models. The paper thus contributes to the ongoing debate on the future of economic science by positioning quantum-inspired analysis as a promising methodological direction for understanding a rapidly transforming global economy.

Keywords: Economic theory; global economic crises; shadow economy; real vs. financial sector; service-dominated economies; digital economy; Industry 4.0; big data; behavioural economics; quantum economics; decision theory under uncertainty; economic complexity; non-linear modelling; technology-driven economic development.

Introduction

In contemporary research, theoretical approaches to socio-economic development can generally be grouped into four theories of social progress, categorized based on their underlying assumptions. Each of these theories may be regarded as an attempt—arising over the past 20–30 years in line with current trends of economic thought—to elaborate a unified theory of socio-economic development. The research methodologies of these theories are interdisciplinary and multi-disciplinary in nature, prioritizing geographic, institutional, and cultural factors. As a result, they differ from one another and, in some cases, even contradict each other.

J. Diamond (2010) emphasizes the role of geographic factors in societal development; D. North, J. Wallis and B. Weingast (2011), as well as D. Acemoglu and J. Robinson (2015), highlight institutional factors; while C. Welzel (2017) emphasizes cultural factors. This article critically evaluates these perspectives and argues that these factors are

¹Licensed

© 2024 The Author(s). This is an open access article under the CC BY license (<http://creativecommons.org/licenses/by/4.0/>).
IMCRA - International Meetings and Journals Research Association (Azerbaijan).

insufficient on their own, stressing the necessity of considering at least two additional determinants: technological progress and the standard of living.

Main Part

The above-mentioned considerations demonstrate that modern economic science is unable to adequately respond to contemporary challenges and is itself undergoing a serious crisis. To confirm this thesis, it is enough to refer to the article by V. Papava (2018).

However, some scholars have asserted that the deficiencies of science, including economic science, have already been overcome, proposing the following arguments:

- In 1894, the later Nobel laureate physicist Albert Michelson declared: *"It is probable that most of the fundamental principles are already firmly established; henceforth, development will consist in the application of these established principles."* Yet the rapid technological progress beginning at the end of the 20th century—particularly the emergence of scientific fields rooted in “soft computing”—proved this claim to be incorrect.
- In 2003, Nobel Prize-winning American economist Robert Lucas stated: *"The central problem of depression-prevention has been solved, for all practical purposes, and has in fact been solved for many decades to come."* However, only a few years later the global economy, not only that of the United States, faced its most severe crisis since the Great Depression of 1930, rendering this statement entirely invalid.
- In November 2019, Nobel laureate Joseph Stiglitz remarked that *"the age of major economic crises is behind us."* Yet within weeks, the world was confronted with the COVID-19 pandemic. The widespread and ongoing restrictions implemented to prevent the spread of the virus led to severe economic decline. According to World Bank statistics, the global economic contraction rate for 2020–2021 amounted to 92.9 percent, marking the most profound economic crisis experienced during 1871–2021.

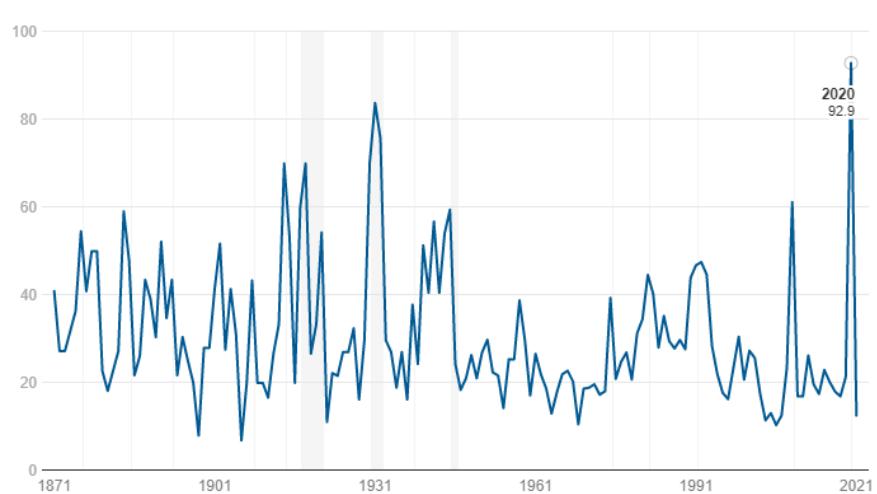


Figure 1. Rate of economic contraction during 1871–2021

Source: WB (2020).

The Shortcomings of Industrial Economics

Globalization, ecological transformations, technological development, and similar phenomena present a series of problems for economic science that, although rarely addressed in the literature, urgently require resolution. These issues can be expressed as follows:

- The informal (shadow) economy. This is an issue of such complexity that even its conceptual definition remains unsettled. Some refer to it as the shadow economy, others as the black, grey, or underground economy, etc. In reality, this is a critical economic problem. Statistics show that it accounts for 31.9% of GDP across 158 countries—essentially one-third of the world economy. Nevertheless, economics textbooks and macroeconomics manuals fail to mention it even in a single sentence. Although this problem has existed for many decades, economic science today remains incapable of offering a concrete remedy or strategy for its mitigation.
- The dominance of the financial sector over the real sector. Another major problem concerns the disproportionately large share of the financial sector relative to the real economy. Review of the 2008 global financial crisis reveals that it resulted from circulation of non-material assets—essentially an expanding pyramid of financial instruments without real economic foundation. This expansion occurred at the expense of the real

sector. Since real value is created in the productive sector, the shrinking of this sector poses a serious problem. Despite the immense consequences of the 2008 crisis, economics still cannot provide an effective formula to eliminate this imbalance.

- The predominance of services over material production. Another major problem is the excessively large share of the service sector compared to material production. Today, countries with the highest living standards tend to be those where services constitute 70–80% of GDP. Yet, examining state resilience during the 2008 crisis shows that countries relying predominantly on services failed to recover quickly. An example is Greece. By contrast, countries such as Germany, where services account for around 60% of GDP, maintain high and stable living standards and avoided severe crisis effects. This is because the German economy is fundamentally industrial, driven by strong manufacturing sectors—including globally dominant automobile producers and other industrial fields.
- Inequality in wage distribution. Today, wage disparities reach levels beyond logical comprehension. For example, the market value of a football player is extremely high—yet what material good do they produce? Likewise for physicians: examining global physician salaries reveals very high compensation—while many highly skilled professionals in other intellectual fields receive very low salaries, and often must pay these same physicians for healthcare services. Another example: Nobel laureates—despite producing outcomes that redirect the trajectory of science and human development—receive compensation that is a tiny fraction of the salary of a top athlete. According to economic theory, wages should correspond to necessary labor expenditures; thus, the current wage distribution is profoundly irrational. Unfortunately, economic science remains silent on this matter, leading to serious negative social consequences.
- Are taxes an economic burden? It is striking that indicators such as consumption or investment are not considered burdens on the economy, yet tax collection is universally labeled as a burden in economic literature. Even though tax revenues are reinvested into the economy and used for development, why is taxation considered an economic burden? While it may constitute a burden for private individuals or individual entrepreneurs—where collected funds are transferred to the state without direct compensation—can tax be universally considered a macroeconomic burden? There is no definitive answer. This highlights a serious shortcoming of economic science, which remains unable to provide a clear resolution.
- The spread of cryptocurrencies and Bitcoin. In 1999, Milton Friedman, founder of monetarism, suggested the possibility of creating a digital currency. Cryptocurrencies were formally introduced in 2009. Yet even after nearly two decades, economic science has not formulated a clear position on this phenomenon. Every currency normally has a sovereign issuer that ensures its reliability. But who stands behind cryptocurrencies? What is their backing? No definitive information exists. Governments, individuals, and even Nobel laureates express concern and call for their restriction or prohibition. But should they be banned or not? There is still no conclusive answer. Business prioritizes speed, and digital payments accelerate transactions, reduce costs, and increase efficiency. If a financial instrument strengthens economic operations and improves transaction quality, should it be adopted? Yet the question of reliability remains unanswered—and economic science still cannot provide a clear explanation.

Economic science is not confronting these problems—rather, it is trailing behind them. Economics is a measurable discipline: nothing exists within it that cannot be quantified. A number of theories have significantly contributed to economic development and proposed specific mechanisms for addressing crises—e.g., the Keynesian model, monetarism, Leontief's input-output model. Yet such theories remain limited in number. Although Nobel laureates transform scientific directions and achieve significant results, even they remain largely outside discussions of these problems. Their resolution requires extensive research. These persistent difficulties constitute serious challenges for economic science—and, regrettably, modern economics remains unable to offer a unified framework of solutions.

The Necessity of Transitioning to a Digital Economy

A historical review clearly shows that, in order to ease human labour and simplify everyday life, new inventions have constantly emerged. From the mid-18th century onward, these changes became so profound in their consequences that they were termed *industrial revolutions*, and in the subsequent years several such revolutions took place.

The First Industrial Revolution, spanning approximately 1765–1840, was driven primarily by mechanization. The invention and diffusion of the steam engine laid the foundation for mechanical production and radically transformed the organisation of industry and labour (Deane, 2010).

From the late 19th century, roughly 1870–1919, the Second Industrial Revolution began, based on the large-scale utilization of electricity, oil, and gas. These energy sources enabled mass production across industrial sectors. Other defining innovations of this period included the internal combustion engine, advances in chemical synthesis, and the development of new means of communication such as the telegraph and telephone, along with major breakthroughs like the automobile and the airplane (Hull, 1999; Engelman, 2018).

The Third Industrial Revolution, emerging in the second half of the 20th century, was triggered by the discovery and application of a previously unused source of energy—atomic (nuclear) energy. This revolution opened the door to electronics, telecommunications, and computers; in short, to a broad spectrum of new technologies. It made possible space exploration, sophisticated scientific research, and the development of biotechnology. Two landmark innovations in the industrial world during this period—Programmable Logic Controllers (PLCs) and industrial robots—ushered in an era of advanced automation. For this reason, the Third Industrial Revolution is frequently described as the computer revolution or the digital revolution (Jeremy, 2012).

However, the overexploitation of natural resources and the looming threat of their depletion, declining productivity, slowing economic growth, rising unemployment, and persistent inequality all compel us to reconsider existing economic models. Taking into account the economic consequences of scientific and technological change, American social theorist and economist Jeremy Rifkin proposed a roadmap for a new economic system. He argues that the Third Industrial Revolution arises from the convergence of three core technologies, all embedded within society and the environment through the Internet of Things (IoT):

- an ultra-high-speed 5G communication Internet;
- a renewable energy Internet;
- a mobility and logistics Internet (including autonomous, driverless mobility).

The convergence of Internet technologies and renewable energies, Rifkin suggests, is laying the groundwork for a new infrastructure that will redistribute power and transform economic relations in the 21st century. In the foreseeable future, hundreds of millions of people will be able to generate their own renewable energy in their homes, offices, and factories. Just as we now produce and share information online, they will be able to share their surplus electricity over an “Energy Internet” (Jeremy, 2011).

This intelligent digital infrastructure of the 21st century gives rise to a radically new sharing economy, which reshapes how we organize, empower, and mobilize economic life. The Internet of Things infrastructure, combined with big data and advanced analytics, makes it possible to design algorithms that enhance productivity in the production and distribution of goods and services and drive marginal costs toward zero (Jeremy, 2014).

In a share-based (sharing) economy, traditional sellers and buyers are increasingly replaced by *providers* and *users*. Social capital becomes as important as market capital; consumerism is complemented—and in some cases replaced—by sustainability; and indicators of quality of life gain prominence over GDP as key metrics of societal progress. The sharing economy sharply reduces the ecological footprint of society and can be transformed into a circular economy, in which goods and services are repeatedly re-used and redistributed among a large number of users.

The Fourth Industrial Revolution

For millennia, scientific thought was dominated by the Aristotelian binary logic of 0-1. Demonstrating the insufficiency of this rigid logic and the emergence of fuzzy logic has led to profound transformations in social relations, economic interactions, systems of value and utility, human behaviour, culture, and ethics. These transformations, in their true sense, have been revolutionary and have culminated in what is now termed the Fourth Industrial Revolution. In other words, the outcomes of the Third Industrial Revolution—above all, the rapid advance of digitalization—have paved the way for the Fourth Industrial Revolution.

The Fourth Industrial Revolution can be understood as the fusion and blurring of boundaries between the physical, digital, and biological worlds. It encompasses the development and integration of artificial intelligence (AI), robotics, the Internet of Things, 3D printing, genetic engineering, quantum computing, and other frontier technologies.

Klaus Schwab, founder and executive chairman of the World Economic Forum, who popularized the concept in his book *The Fourth Industrial Revolution*, notes that, like previous revolutions, this new wave has the potential to raise global income levels, improve quality of life, generate long-term gains in innovation, efficiency and productivity, and substantially reduce costs in transportation, communication and trade. In doing so, it can significantly influence the trajectory of economic development (Schwab, 2016).

At the same time, as economists such as Erik Brynjolfsson and Andrew McAfee have stressed, it is essential to consider that the Fourth Industrial Revolution may also exacerbate inequalities, particularly in labour markets (Brynjolfsson & McAfee, 2014). As economic processes become increasingly automated and human labour is replaced by machines, unemployment may rise, while the employed labour force becomes polarized into categories of “high-skilled” and “low-skilled” workers.

One of the core requirements and drivers of the Fourth Industrial Revolution is digitalization, whose impact across sectors has led to the emergence of new technology-based segments of the economy. Economic activity grounded in digital computing technologies is referred to as the digital economy, sometimes also called the new economy or web-based economy. The term *digital economy* was first introduced in the mid-1990s—during a period of recession—by a Japanese professor and researcher.

Economic Consequences of the Fourth Industrial Revolution

The current economic system differs fundamentally from that of thirty years ago. If in 1992 the global system is estimated to have generated around 100 GB of information per day, today it produces approximately 45,000 GB per second, and in the near future this figure is expected to reach 150,700 GB per second. Human beings must fulfill their role within this unprecedented stream of information: they must analyse incoming data, evaluate it, and make decisions accordingly. This requires new types of knowledge, particularly advanced analytical and critical thinking skills.

Operating in a digital environment demands distinct competencies and literacies. The problem of digital illiteracy is becoming increasingly visible. Education systems are lagging behind technological change: both in terms of the specializations they offer and the levels of knowledge they impart, they often fail to meet the requirements of the digital age.

Simultaneously, profound transformations in public administration are anticipated. Public service institutions that directly interact with different strata of society—such as tax authorities, customs, audit bodies, banks, and financial institutions—are expected to evolve from primarily executive bodies into analytical centres. The professionals working in these institutions will increasingly need to function as analysts, interpreting complex streams of financial and economic data.

Currently, approximately 12% of global business is conducted via the Internet. Over the next 30 years, it is projected that about 80% of business transactions will take place online. The global digital economy accounts for an estimated 4.5–15.5% of world GDP. Considering that global GDP is close to 90 trillion USD, this represents a very substantial amount.

In 2017, the digital economy accounted for between 6.9–21.6% of GDP in the United States and 6–30% in China. The share of digitally delivered services exports in total global services exports was between 1.2–2.9 trillion USD for the period 2005–2018. Global ICT services exports reached approximately 175–568 billion USD over the same period, while global employment in the ICT sector stood at 34–39 million people during 2010–2015 (TEC, 2020).

In the economic geography of the digital economy, the traditional North–South or East–West divide is far less pronounced. Leadership is concentrated in two countries that recurrently occupy central positions in digital development—one a highly industrialized economy and the other an emerging powerhouse: the United States and China. Together, they account for about 75% of patents related to blockchain technologies, roughly 50% of global IoT-related spending, and more than 75% of the world market for public cloud computing services.

Methodological Shortcomings and Risks of Digitalization

Like any structural transformation, digitalization brings not only advantages but also significant challenges and risks. Klaus Schwab highlights the predominantly negative aspects of digitalization in various domains of life, grouping them according to the type of change they induce. The main concerns include (Schwab, 2016):

- Reduced data security;
- Increased online threats and pervasive surveillance;
- Erosion of privacy and potential over-control;
- Group-think dynamics and rising polarization within interest groups;
- Rapid dissemination of misinformation;
- Greater dependence on digital environments and escapism from reality;
- Deepening political fragmentation;
- The loss of jobs, particularly for low-skilled workers;
- Vulnerability to cyber-attacks, criminal activities, and social instability.

Given that digitalization affects different sectors in distinct ways, its overall impact is heterogeneous. Its general features and outcomes can vary significantly depending on how, where, and in which new fields digital technologies are applied. As a result, digitalization simultaneously generates new opportunities for innovation and efficiency while also producing new forms of social and economic risk.

The digitalization of the economy creates new business models and a broader framework for innovation, contributing to improvements in living standards. However, it also leads to a number of economic and social problems:

- The most fundamental challenge is the difficulty of measuring the value created by digitalization. Many digital activities, though economically significant, are not fully captured in traditional accounting and statistical frameworks and may appear as “free” or “invisible” to standard measurement. This creates opportunities for

tax evasion and avoidance. Unfortunately, an effective and widely accepted methodology for measuring the economic value generated by digitalization has yet to be developed.

- A second major problem is the lack of high-quality data. In many developing countries, serious data issues persist: either relevant data are absent or they are of poor quality. As a result, data collection often lags behind technological progress (Bukht & Heeks, 2017). This weakens the basis for evidence-based policymaking and limits the ability to monitor and steer digital transformation.

Other analyses emphasize further negative aspects of the digital economy (ETBDE, 2020):

- Job losses and labour displacement. The development of the digital economy can lead to the disappearance of many traditional jobs. As processes are automated and digital platforms expand, the demand for certain categories of human labour declines, particularly routine tasks in both manufacturing and services.
- Skills mismatch and shortage of qualified specialists. The digital economy relies on complex technologies and processes. The design, management, and use of digital platforms require highly qualified specialists and a skilled workforce. In many places—especially in rural and remote regions—there is a serious shortage of such human capital, reinforcing regional and social inequalities.
- High investment requirements and infrastructural barriers. The digital economy demands substantial investment in robust infrastructure: high-speed Internet, powerful mobile networks, and advanced telecommunications systems. These needs, combined with multiple cultural and socio-economic constraints, constitute some of the main challenges faced by developing countries. Limited financial resources, inadequate infrastructure, and institutional weaknesses hinder their ability to fully harness the potential of digitalization.

In sum, while digitalization and the Fourth Industrial Revolution create unprecedented opportunities for productivity growth, innovation, and improvements in quality of life, they also expose deep methodological gaps in economic measurement, generate new social risks, and intensify existing inequalities. Addressing these challenges requires not only technological solutions but also a re-thinking of economic theory and policy, including the development of new conceptual frameworks and tools suited to the realities of the digital age.

Conclusion

This research demonstrates that the prevailing frameworks of economic theory — particularly those inherited from industrial-age classical and neoclassical traditions — are increasingly inadequate for interpreting contemporary economic realities. Rigid equilibrium-based models, deterministic assumptions regarding rational economic actors, and the structural separation of real and financial sectors have all contributed to theoretical blind spots that prevent economics from anticipating crises or designing effective corrective mechanisms.

The analysis of revolutionary transitions — from steam-powered mechanization to electrification, from digital computing to cyber-physical systems — illustrates that each major technological transformation requires a corresponding evolution in economic reasoning. The contemporary digital-networked economy amplifies this necessity, as economic interactions increasingly occur in environments characterized by real-time data streams, algorithmic mediation, informational asymmetry, and behavioural unpredictability.

Emerging frameworks such as quantum economics and quantum-inspired decision theory provide a promising alternative. By explicitly incorporating uncertainty, non-commutativity of decisions, state-dependent preferences, probabilistic estimation, and superposition of behavioural states, these approaches more accurately reflect economic behaviour in complex and information-dense environments. Such frameworks do not merely supplement existing theory — they have the potential to restructure economic science fundamentally.

Therefore, the development of new mathematical models grounded in empirical complexity rather than idealized assumptions represents an essential pathway for the modernization of economic science. We conclude that success in understanding and navigating the economic systems of the 21st century requires openness to interdisciplinary methods, conceptual flexibility, and a willingness to embrace theoretical innovation beyond classical conceptual boundaries.

Ethical Considerations

This study is based exclusively on publicly available data, published literature, and theoretical analysis. No human subjects, personal data, or confidential materials were used. The authors adhered to international academic integrity and citation standards and declare that the work involves no ethical risks or violations.

Author Contributions

- Akif Musayev — conceptualization of research, development of theoretical framework, analysis of economic models, preparation of main manuscript sections.
- Mirvari Qazənfərli — data organization, literature review, analytical synthesis of digital and quantum economic frameworks, revision and refinement of text.

Both authors reviewed the manuscript critically and approved the final version for publication.

Acknowledgements

The authors express deep gratitude to the Institute of Economics of the Azerbaijan National Academy of Sciences for institutional support, access to research databases, and a stimulating scientific environment encouraging interdisciplinary research in advanced economic methodology.

Funding

This research received no external funding from public, private, or commercial entities. It was fully conducted within the academic responsibilities and regular scientific activities of the authors.

Conflict of Interest Statement

The authors declare no conflict of interest. The research is purely academic, contains no financial or political bias, and does not serve any commercial or institutional agenda.

References

1. Acemoglu, D., & Robinson, J. A. (2015). *Why nations fail: The origins of power, prosperity, and poverty*. AST Publishing.
2. Aerts, D., & Aerts, S. (1994). Applications of quantum statistics in psychological studies of decision processes. *Foundations of Science*, 1, 85-97.
3. Angel, J. (2017). The evolution of money. Review of *The Evolution of Money* by David Orrell and Roman Chlupatý. *Business History Review*, 91(2), 397-399. <https://doi.org/10.1017/S0007680517000800>
4. Arner, D., Barberis, J., & Buckley, R. (2019). The rise of digital finance: FinTech, blockchain, and the transformation of financial systems. *Journal of Banking Regulation*, 20, 6-12.
5. Autor, D., Mindell, D., & Reynolds, E. (2020). The work of the future: Building better jobs in an age of intelligent machines. *MIT Future of Work Report*.
6. Baaquie, B. E. (2007). *Quantum finance: Path integrals and Hamiltonians for options and interest rates*. Cambridge University Press.
7. Bénassy-Quéré, A., & Pisani-Ferry, J. (2020). Economic policy in the COVID-19 crisis. *Oxford Review of Economic Policy*, 36(S1), S187-S207.
8. Blumberg, D. M., & Cragun, O. R. (2019). Artificial intelligence and the future of economics. *California Management Review*, 61(4), 33-51.
9. Brynjolfsson, E., & McAfee, A. (2014). *The second machine age: Work, progress, and prosperity in a time of brilliant technologies*. W. W. Norton & Company.
10. Bukht, R., & Heeks, R. (2017). Defining, conceptualising and measuring the digital economy. *Manchester Centre for Development Informatics Working Paper*, 68.
11. Chen, M. A., Wu, Q., & Yang, B. (2021). Big data analytics in financial economics. *Journal of Economic Dynamics & Control*, 128, 104125.
12. Deane, P. (2010). *The first industrial revolution* (2nd ed.). Cambridge University Press.
13. Diamond, J. (2010). *Guns, germs, and steel: The fates of human societies*. AST Publishing.
14. Engelman, R. (2018). The second industrial revolution: 1870-1914. USHistoryScene.
15. ETBDE. (2020). Emerging trends in business digital economy. Business-Environment Guide.
16. Friedman, B., & Hendry, D. (2020). Causality, uncertainty, and economic modeling in a data-intensive era. *Econometrica*, 88(3), 1083-1109.
17. Gersbach, H., & Schneider, M. T. (2021). Digital platforms and macroeconomic stability. *Journal of Monetary Economics*, 123, 59-75.
18. Gilbert, T., Kogler, C., & Smith, H. (2022). Quantum cognition and decision-making: A review for social scientists. *Journal of Economic Psychology*, 92, 102540.
19. Haven, E., & Khrennikov, A. (2013). *Quantum social science*. Cambridge University Press.
20. Hubbard, W. H. J. (2017). Quantum economics, Newtonian economics, and law. *Michigan State Law Review*, 425, 425-456.
21. Hull, J. (1999). The second industrial revolution: The history of a concept. *Storia Della Storiografia*, 36, 81-90.
22. Nakamoto, S. (2019). Bitcoin: A peer-to-peer electronic cash system. Bitcoin Foundation Reprint Edition.
23. North, D., Wallis, J., & Weingast, B. (2011). *Violence and social orders: A conceptual framework for interpreting recorded human history*. Gaidar Institute Publishing.
24. OECD. (2023). *OECD digital economy outlook 2023*. OECD Publishing.
25. Orrell, D. (2016). A quantum theory of money and value. *Economic Thought*, 5(2), 19-28.
26. Orrell, D. (2017). A quantum theory of money and value, Part 2: The uncertainty principle. *Economic Thought*, 6(2), 14-26.
27. Orrell, D. (2018a). *Quantum economics: The new science of money*. Icon Books.
28. Orrell, D. (2018b). Quantum economics. *Economic Thought*, 7(2), 63-82.

29. Papava, V. (2018). On the crisis in economic science and the ways to overcome it. *Economy of Ukraine*, 10(679).
30. Polterovich, V. M. (2018). Toward a general theory of socio-economic development: Geography, institutions, or culture? *Voprosy Ekonomiki*, 11, 5-26.
31. Poven, M. (2022). Quantitative and qualitative challenges in modelling shadow economy. *World Economy*, 45(11), 3072-3095.
32. Qadir, A. (1978). Quantum economics. *Pakistan Economic and Social Review*, 16(3-4), 117-126.
33. Samuelson, P. A. (1979). A quantum theory model of economics: Is the coordinating entrepreneur just worth his profit? In *The collected scientific papers of Paul A. Samuelson* (Vol. 4, pp. 104-110). MIT Press.
34. Schaden, M. (2002). Quantum finance. *Physica A: Statistical Mechanics and Its Applications*, 316(1), 511-538.
35. Schreyer, P., & Pilat, D. (2020). Measuring digital transformation: A progress report. *OECD Statistics Working Papers*, 10, 1-34.
36. Schwab, K. (2016). *The Fourth Industrial Revolution*. Crown Publishing Group.
37. Schwab, K. (2020). *The Fourth Industrial Revolution* (Azerbaijan translation). UNEC Press.
38. Summers, L. H. (2021). The age of secular stagnation revisited. *Brookings Papers on Economic Activity*, Fall Issue.
39. Taleb, N. N. (2018). *Skin in the game: Hidden asymmetries in daily life*. Penguin Random House.
40. Taleb, N. N. (2020). The statistical structure of heavy-tail distributions in economics. *Physica A*, 559, 125-235.
41. TEC. (2020). Trading Economics global database. TradingEconomics.
42. TIR. (2018). *The Third Industrial Revolution: A radical new sharing economy* [Documentary film].
43. United Nations. (2023). *Digital economy report 2023*. UNCTAD.
44. Varian, H. (2019). Artificial intelligence, economics, and industrial organization. *NBER Working Paper No. 24839*.
45. Welzel, C. (2017). *Freedom rising*. VTSIOM Publishing.
46. World Bank. (2020). The global economic outlook during the COVID-19 pandemic. World Bank Report.
47. World Economic Forum. (2024). *Global competitiveness report – Digital transformation edition*. WEF.
48. Zuboff, S. (2019). *The age of surveillance capitalism*. PublicAffairs.

Table 1. Evolution of Industrial Revolutions and their Economic Consequences (1765–2021)

Phase / Period	Defining Technological Breakthroughs	Economic Structure & Production	Labour Market Effects	Dominant Economic Paradigm	Limitations / Emerging Problems
1st Industrial Revolution (1765–1840)	Steam engine; mechanization	Mechanized manufacturing; shift from manual to machine production	Migration to urban labour; expansion of factory workforce	Classical economics (Smith, Ricardo)	No labour protections; income inequality; child labour; environmental neglect
2nd Industrial Revolution (1870–1919)	Electricity, oil, gas; internal combustion engine; telephone, telegraph; chemical synthesis	Mass production; standardized manufacturing; emergence of large industrial firms	Skilled labour demand increases; beginning of wage-structure diversification	Neoclassical economics; marginalism	Capital-labour conflicts; monopolization; financial speculation begins
3rd Industrial Revolution (1950s–2000s)	Electronics, computers, nuclear energy; telecommunications; programmable logic controllers; robotics	Digitalization of production; programmable manufacturing; early automation; space and biotech expansions	Automation displaces routine jobs; emerging demand for programmers, engineers, analysts	Information economy; Keynesian post-industrial theories	Structural unemployment; productivity stagnation; shift from real to financial economy
4th Industrial Revolution (2000s–present)	AI, Big Data, IoT, 5G, 3D printing, synthetic biology, blockchain, quantum computing	Cyber-physical systems; platform economy; digital service ecosystems; decentralized energy production	Labour polarization (“high-skilled” vs. “low-skilled”); gig economy growth; remote labour	Behavioural economics; digital economy theories; quantum economics	Job displacement, cybersecurity threats, privacy concerns; tax invisibility of digital value; regulatory lag
Future / Emerging Stage (2025–2040)	Quantum computing; neural-economic modelling; human-machine co-decision systems	Quantized economic analysis; autonomous markets; algorithmic optimization	Redefinition of the concept of “work”; cognitive-knowledge labour dominance	Quantum economics; non-linear modelling; probabilistic decision frameworks	Necessity of new methodologies; epistemological shift in economics; uncertainty in policy implications

Table 2. Structural Challenges of the Industrial-Era Economic Model

Structural Problem	Description (based on text)	Global Magnitude / Evidence	Economic Impact	Why Current Economic Science Fails
Shadow Economy	Activities not captured in formal statistical accounting	~31.9% of world GDP across 158 countries	Tax evasion, market distortion, criminal infiltration	Standard macroeconomic models ignore unregistered value flows
Dominance of Financial Sector	Expansion of financial instruments beyond real production	2008 crisis caused by abstract financial pyramids	Asset bubbles, inequality, wealth concentration	Neoclassical equilibrium models assume rational finance
Service Sector Over-dominance	Services >70–80% of GDP in advanced states	Greece vs. Germany example	Fragility during crisis; insufficient productive base	GDP mismeasures <i>value generation vs. value circulation</i>
Wage Distribution Anomalies	Compensation not correlated with social productivity	Footballers vs. scientists; physicians vs. research-	Labour market distortion; social tension	Economics lacks robust theory of real-value remuneration

		ers		
Tax Classification Problem	Taxes treated as “economic burden” regardless of reinvestment	Contradicts macro-level capital cycle	Reduces fiscal policy legitimacy	Microeconomic burden ≠ macroeconomic investment
Cryptocurrencies & Bitcoin	Currency without national guarantee	\$1+ trillion market value	Financial destabilization; blockchain innovation	Lack of theory of “trust-without-institutional-anchor”

Table 3. Classical vs. Quantum Economics – Conceptual Distinctions

Feature	Classical / Neoclassical Economics	Behavioural Economics	Quantum Economics
Decision-making	Rational agents (<i>homo economicus</i>)	Biased, emotional, bounded-rationality	Superposition of mental states; probability-based
Value of Money	Neutral medium of exchange	Psychological value is contextual	Dual-nature entity (stored information + potential)
Market Behaviour	Equilibrium tendencies	Cognitive deviations from equilibrium	Non-equilibrium, path-dependent, hysteresis
Measurement	Deterministic variables	Probabilistic anomalies	Measurement uncertainty principle
Mathematic Basis	Differential calculus, linearity	Behavioural models, heuristics	Non-commutative algebra, Hilbert spaces
Forecasting	Predictive, continuous	Predictive with cognitive error	Fundamental unpredictability incorporated
Ideal Model	Uniform rational market	Cognitive heterogeneity	Quantum probabilistic individuality

Table 4. Implications of Digitalization and Industry 4.0 for National Economies

Domain	Change Introduced	Economic Outcome	Policy Requirement
Data & Information	Explosion of data: 45,000 GB per second (2021)	Growth of data-driven industries	National data governance frameworks
Labour Market	Automation & algorithmic management	Rising structural unemployment	Lifelong learning, skills re-training
Governance	Digital administration	Shift from execution to analytical oversight	E-government & AI-supported institutions
Trade & Business	E-commerce growth 12% → projected 80%	Decline in physical transaction cost	Digital taxation reform
Energy	Distributed micro-generation	Energy-sharing networks	Energy-Internet regulatory frameworks
Education	Demand for analytical mindset	New types of digital literacy	Education reform, interdisciplinary STEM

Table 5. Sources of Economic Crisis Mentioned in the Manuscript

Crisis	Quote from Authority	Outcome	Conclusion
Michelson	“Fundamental principles are established...”	New sciences	Scientific progress

(1894)	development is application”	contradicted assumption	unpredictable
Lucas (2003)	“Problem of depression-prevention is solved”	2008 crisis	Macroeconomic models failed
Stiglitz (2019)	“Age of major economic crises is behind us”	COVID-19 crisis	Black swan events must be integrated